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What is TOPSWhat is TOPS

q TOPS = Terascale Optimal PDE Simulations.

q Funded by the Office of Advanced Scientific Computing 
Research (OASCR) of the Office of Science in the U.S. 
Department of Energy.

q Launched in July 2001 under the Scientific Discovery 
Through Advanced Computing (SciDAC) Program.
§ One of three applied math Integrated Software 

Infrastructure Centers (ISIC’s).
§ One of 51 SciDAC projects in the Office of Science.
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Goals of TOPSGoals of TOPS

q Solver technology.
q Not just algorithms, but also vertically integrated software

suites.

q Portable, scalable, extensible, tunable implementations.

q Starring ARPACK, Hypre, PETSc, SuperLU, and ScaLAPACK, 
among other existing packages.

q Motivated by representative applications, intended for many 
others.
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Driving Force Behind TOPSDriving Force Behind TOPS

q Three driving SciDAC science applications in the original 
plan:

§ LBNL/SLAC-led “Advanced Computing for 21st Century 
Accelerator Science and Technology”.

§ ORNL-led “Shedding New Light on Exploding Stars:  Terascale 
Simulations of Neutrino-Driven SuperNovae and Their 
NucleoSynthesis”.

§ PPPL-led “Extended Magnetohydrodynamic Modeling”.

q Many more application partners now.
§ QCD, chemistry, …
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Who are in TOPSWho are in TOPS

q Three DOE laboratories …
§ Argonne National Laboratory     (Jorge Moré, Barry Smith)
§ Lawrence Berkeley National Laboratory     (Esmond Ng)
§ Lawrence Livermore National Laboratory     (Robert Falgout)

q Seven universities …
§ Carnegie Mellon University
§ Columbia University     (David Keyes – lead PI)
§ New York University
§ Old Dominion University
§ University of California, Berkeley
§ University of Colorado, Boulder
§ University of Tennessee, Knoxville
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What Kind of SolversWhat Kind of Solvers

q Include:
§ Linear system solvers:  Ax = b
§ Nonlinear implicit solvers:  F(x) = 0
§ Adaptive time integrators for stiff systems:  f(x’,x,t) = 0
§ Optimizers:  minu φ(x,u) s.t. F(x,u) = 0
§ Eigenvalue solvers:  Ax = λBx

q Software integration.

q Performance optimization.
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Scope of TOPSScope of TOPS

Optimizers

Linear Solvers

Eigenvalue
Solvers

Time
Integrators

Nonlinear Solvers

Indicates dependence
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TOPS @ Berkeley LabTOPS @ Berkeley Lab

q Areas:
§ Linear Equations Solvers:  Ax = b

• Sparse direct methods
• Preconditioning techniques for iterative methods

§ Eigenvalue Solvers:  Ax = λBx

q Members:

Weiguo GaoChao Yang
Visiting ScientistEsmond Ng

Osni Marques
Ali PinarSherry Li
Laura PetrescuParry Husbands

PostdocsStaff
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Application PartnersApplication Partners

q SLAC’s Electromagnetic Systems Simulations in the 
Accelerator Science and Technology SciDAC Project.
§ Linear Algebra – large-scale sparse eigensolvers, sparse linear 

equations solvers (LBNL, Stanford, SLAC).
§ Load Balancing – improving performance and scalability (LBNL, 

Sandia, SLAC).

q Center for Extended Magnetohydrodynamic Modeling.
§ Linear Algebra – solution of large sparse ill-conditioned linear 

systems (LBNL, Univ. of Wisconsin).
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Designing Accelerator StructuresDesigning Accelerator Structures

q Modeling of accelerator structures requires the solution of 
the Maxwell equations.

q Finite element discretization
in frequency domain leads to
a large sparse generalized
eigenvalue problem.
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Designing Accelerator StructuresDesigning Accelerator Structures

q Design of accelerator structures.
§ Modeling of a single accelerator cell suffices.

• Relatively small eigenvalue problem.
§ There is an optimization problem here …

• But need fast and reliable eigensolvers at every iteration.

q Understanding the wake field requires the modeling of the 
full structure.
§ Need to compute a large number of frequency modes.
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Challenges in Eigenvalue CalculationsChallenges in Eigenvalue Calculations

q 3-D structures ⇒ large matrices.
§ Need very accurate interior 

eigenvalues that have relatively 
small magnitudes.

§ Eigenvalues are tightly clustered.
§ When losses in structures are 

considered, the problems will 
become complex symmetric.

q Omega3P has been able to compute 
eigen modes of large accelerator 
structures with large number of 
DOF’s (without losses).

interior eigenvalues

Spectral Distribution
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LargeLarge--scale Eigenvalue Calculationsscale Eigenvalue Calculations

q Parallel shift-invert Lanczos algorithm.
§ Ideal for computing interior and clustered eigenvalues.

§ Need solution of sparse linear systems.

q SLAC:  inexact solution + Newton-type correction.

q LBNL:  exact shift-invert Lanczos.
§ Require complete factorizations of (sparse) matrices.
§ Exploit work on sparse direct solvers in TOPS.
§ Combine SuperLU_DIST with PARPACK to obtain a parallel 

implementation of a shift-invert Lanczos eigensolver.
§ Enable accurate calculation of eigenvalues, allow verification of 

other eigensolvers, and provide a baseline for comparisons.

( )-1K M M K M M Mx x x xλ σ µ= → − =
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High Performance Direct Linear SolverHigh Performance Direct Linear Solver

q SuperLU and SuperLU_Dist.
§ Direct solution of sparse linear system 

Ax = b.
§ Efficient, high-performance, portable 

implementations on modern computer 
architectures.

§ Support real and complex matrices, 
fill-reducing orderings, equilibration, 
numerical pivoting, condition 
estimation, iterative refinement, and 
error bounds.
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Quick Tour of ResultsQuick Tour of Results
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Quick Tour of ResultsQuick Tour of Results
dds47 Performance (16 eigenvalues)
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Status of Eigenvalue CalculationsStatus of Eigenvalue Calculations

q Accomplishments:
§ TOPS/Exact Shift-invert Lanczos and Omega3P/Inexact 

Shift-invert Lanczos produce the same eigenvalues.
§ ESIL is faster than ISIL, but requires more memory.

• NERSC IBM SP has >6 terabytes of real memory.
§ Exact shift-invert Lanczos has been integrated into Omega3P 

as a run-time option.

q The accelerator application helps motivate new 
developments & improvements in SuperLU.
§ Accommodate distributed input matrices.
§ Parallel symbolic factorization (in progress).
§ Improve triangular solution (in progress).
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Highlights of Eigenvalue CalculationsHighlights of Eigenvalue Calculations

q Largest eigensystem solved by LBNL team:
§ 7.5M DOFs, 304M nonzeros
§ 6,260M nonzeros in factors, requiring 2.5 hours to compute 10 

eigenvalues close to a single shift using 24 processors (on 3 
nodes) on NERSC IBM SP.

q Largest eigensystem solved by SLAC team:
§ > 90M DOFs with a sparse matrix factorization.
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TOPS Meets FusionTOPS Meets Fusion

q NIMROD, developed at the Center for Extended 
Magnetohydrodynamic Modeling (CEMM), is a parallel 
simulation code for studying the nonlinear macroscopic 
electromagnetic dynamics in fusion plasmas.
§ Have difficulties in convergence when

iterative methods are used in solving
linear systems.

q Joint work between CEMM and TOPS
has led to a performance improvement
in NIMROD by a factor of 5-10 on
NERSC IBM SP, “equivalent of 3-5 years
progress in computing hardware” (Dalton Schnack of SAIC).
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SuperLU Speeds Up Fusion CodeSuperLU Speeds Up Fusion Code

q Parallel SuperLU has been incorporated into NIMROD as an 
alternative linear solver.
§ In updating physical fields, SuperLU is used as a direct solver 

and is >100x and 64x faster on 1 and 9 processors, 
respectively.

§ A larger linear system in the
time-advance has to be solved
by the conjugate gradient method.
SuperLU is used to factor a
preconditioning matrix.  This
resulting in a 5-fold improvement
in speed.
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q Load balancing problem in Tau3P, a time-domain code for 
electromagnetic simulations.
§ Use of unstructured meshes and refinements lead to matrices 

for which nonzero entries are not evenly distributed.
§ Make work assignment and load balancing

difficult in a parallel setting.
§ SLAC’s Tau3P currently uses ParMETIS

to partition the domain to minimize
communication.

Load Balancing in EM SimulationsLoad Balancing in EM Simulations

Matrix Distribution over 14 cpu’s
Matrix Sparsity

Parallel Speedup
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Load Balancing in EM SimulationsLoad Balancing in EM Simulations

q Collaboration between SLAC and TOPS (+ Sandia) has 
resulted in improved performance in Tau3P.
§ Sandia’s Zoltan library is implemented to access better 

partitioning schemes for improved parallel performance over 
existing ParMETIS tool through reduced communication costs.

8 processor partitioning of a 5-cell RDDS with couplers on NERSC IBM SP

19655345.6 secRCB-3D

31282218.5 secRCB-1D

5853288.5 secParMETIS

Max. Bound. ObjectsMax. Adj. Procs.Tau3P Runtime

ParMETIS
RCB-1D

RCB-3D
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Load Balancing in EM SimulationsLoad Balancing in EM Simulations

q Significant improvement obtained from using RCB-1D over 
ParMETIS on a 55-cell structure due to the linear nature of 
the geometry.

RCB-1D

Performance results on NERSC IBM SP for a 55-cell structure
RCB-1D

max. adj. procs
RCB-1D
run time

ParMETIS
max. adj. procs

ParMETIS
run-time

# of
processors

21236.641455.032

2627.24736.664

492.314292.1512

2129.211360.0256

2265.110643.0128

ParMETIS
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Summary and Future PlansSummary and Future Plans

q TOPS/LBNL has contributed to great successes in some 
SciDAC applications.

q Future Plans:
§ Sparse direct solvers.

• More improvements (e.g., symbolic factorization & triangular 
solutions) to make sparse direct methods more scalable.

• Fill-reducing orderings and scheduling issues.
§ Eigenvalue calculations:

• Other eigen solvers to handle extremely large problems (e.g., 
multilevel algorithms, Jacobi-Davidson).

§ Incomplete factorization algorithms for iterative methods.
§ Other applications.

q More information available at http://www.tops-scidac.org.


